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Various statistical characteristics in the whole interval of equilibrium 
of locally isotropic turbulence are calculated herein on the basis of a 
model with a spectral density which attenuates as a Gaussian function 
for large wave numbers. Uhere this is possible the characteristics so 
obtained are compared with results obtained on the basis of other turbu- 
lence models: a model with constant skewness and the Reisenberg model 
in certain places. The structural velocity functions, the longitudinal 
third moment of the velocity and the skewness coefficient, the struc- 
tural function and spectrum of the pressure, correlation functions of 
the vorticity and acceleration are determined. The majority of the ob- 
tained characteristics do not depend very strongly on the selection of 
the turbulence model. 

A.N. Rolaogorov’s theory of isotropic turbulence explained a number 
of regularities of turbulent flow at very large Reynolds numbers. In 
this theory the turbulent flow is considered as a set of vortices of 
different scales. The very largest vortices, which are characterized by 
the so-called external scale of turbulence L, originate because of the 
instability of the whole mean flow. The scale L is of the order of the 
distance in which the velocity of the mean flow changes significantly. 
The motion of vortices with scales much smaller than L may be considered 
homogeneous and isotropic as well as quasi-stationary. Guasi-station- 
arity means that the change in the statistical characteristics of the 
motion in the considered range of vortices occurs in a time much greater 
than the characteristic periods of the given vortices. This interval of 
scales of motion is characterized by two parameters: the mean dissipa- 
tion of the vortex kinetic energy per unit mass per unit time <E> and 
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the kinematic viscosity v. The angular brackets denote statistical aver- 
ages, The viscosity in this scale interval is essential only for the 
very finest vortices for which the intrinsic Reynolds number is of the 
order of unity. Dissipation is negligible in larger vortices. 

A single combination with the dimension of a length A, = (v”/<E>)‘/~ 
can be formed from the parameters <E> and v. The length h,. called the 
internal scale of turbulence, characterizes the range of vortices in 
which viscous dissipation of the turbulent kinetic energy occurs. In the 
scale interval A, << r << L the motion is determined by the single para- 
meter <I? which measures the intensity of the energy flux transmitted 
without noticeable loss from the larger to the smaller scale vortices. 
The influence of viscosity is insignificant here, hence, this scale 
interval is called inertial. The whole scale interval r << L has re- 
ceived the designation of equilibrium interval. 

The theory of locally isotropic turbulence, which is limited to the 
study of the equilibrium interval, requires no knowledge of the average 
quantities which it is often impossible to determine from experiment. 
Thus, the determination of the average values for atmospheric turbulence 
is difficult because of the extremely wide spectrum of the meteorological 
parameters. Instead of correlation functions for the quantities them- 
selves Kolmogorov’s theory introduces the correlation functions of the 
differences in the quantities being studied, the structural functions. 
If the average quantities are known then both descriptions become equi- 
valent and the transition from the structural to the correlation func- 
tions presents no difficulty. 

1. The Kolmogorov theory yields the form of the structural functions 
of the velocity 

Dij (r) = <[Ui (M) - y (M’)l [Uj (Ml - uj (M’)l) (l.1) 

in two different scale domains: r << h, and h, << r << L. where r is the 

distance between the observation points M and M’. Because of the homo- 

geneity and isotropy of the turbulence in the equilibrium interval, the 

structural tensor (1.1) can be represented as 

Dij (r) = ID,, (r) - D,, (r)l rirj i r2 + D,, (r) 6ij (1.2) 

where IIll and D,,(r) are the longitudinal and transverse structural 

functions of the velocity, composed of differences in the longitudinal 

and transverse components of the velocity. According to Kolmogorov [l, 21 
1 <E) 

4 (6 = 15 y r2, D,, (r) = -&- ‘+ l-2 (r < ho) (1.3) 

D,, (r) = $ P((e) r)!13, D,,,, (r) ==Cz ((E) ,)*;a (ho<r<(L) (I .(I) 
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Rere C is a constant of order unity, determined from experiment. The 

exact for6 of the structural functions of r of order A, is unknown. 

According to similarity theory, here 8s in the whole equilibrium inter- 

V-81, the nondimensional functions of the distance should depend only on 

the ratio r/A,. The question of the form of the structural functions 

for r % A, is equivalent to the determination of the spectrum of velo- 

city fluctuation for large wave numbers k 3 (%>/v3) 1’4. The tensor 

Dij(r) is related to the spectral tensor by means of the relation 

Dij (r) =: 2 \\\ (1 - eikr) (Dij(k) dk, 
e . Y 

The tensor ~ij(k) is determined by a single scalar function of the 

spectral density of the turbulent energy E(k). 

The first attempt to determine the form of the structural functions 

of the velocity in the whole equilibrium interval was made by Obukhov 

[31, who used the hypothesis that the skewness coefficient S of the pro- 

bability distribution for the longitudinal component of the difference 

in the velocities at two points in the flow is constant in the whole 

equilibrium interval 

S D,,l (r) II [ Dr, (rj]“: =-.- consl, n,,, (r) 7: i(r, (.I!, -. “, (Jf’,]“: (1 .C) 

In the inertial interval as Well 8s for r << A, the skewness coeffi- 

cient is actually constant [2]. The results of Townsend [4] indicate its 

approximate constancy even in the intermediate scale interval. However, 

it has been shown LsI that the structural function of the velocity ob- 

tained here seems to possess the requisite ssymptotic properties for 

r << he and A, c< r << L but the corresponding energy spectrum has 

negative sections in certain domains of wave space. Hence, it is more 

convenient to look for interpolation formulas for tbe structural formu- 

las by starting from some sort of positive expressions for the spectrum. 

Recently Novikov [61 made an attempt to determine the form of the velo- 

city spectrum in the domain of very large wave numbers k >> (<E>/v~) ‘I’. 

He obtained the asymptotic formula 

where Cl is a Constant of order unity. 

If the additional hypothesis that a = 2/3 is made, then (1.7) for 

kh, << 1 formally transforms into the well known “5/3 law” for the 

spectrum. Furthermore, if we consider here that formula (1.7) is valid 

in the whole equilibrium interval, then the parameters 4 and Cl can be 

determined. It turns out that C1 = a2’3/r(2/3) and the parameter 

a = 1.76. However, in obtaining the latter value, as well as the upper 
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bound for a, the algebraic and averaging operations must be interohanged. 
which may lead to appreciable error fG]. 

In this work we shall use a spectral density of the form 

a% 
E(k) = - 

I- (2 I 3) 
<E)% k-‘/r exp [-- a (kJ,#] (1.8) 

as the working model in the whole euuilibrium interval, with the justifi- 
cation that this model was given a certain basis in [61. Such a spectral 
density had already been used earlier [51. * 

The parameter a can be related to the value of the constant C for the 
structural functions and to the value ‘of the skewness coefficient in the 
inertial interval. As is known, the relation Kolmogorov tZ1 established 
between C and S has the following form 

(1.9) 

Hence, according to the re- 
sults of paragraph 2 1.41 

2.46-eO.04 
1.30+0.17 

a = 2 [ “;y]% zO.685 C3 (1.10) 

T i 

64 12f (ii/@ *‘* 1 0.843 -~ 

a==151/g 12 y-x I 
___ * Values of the parameters were cal- 

F-i” ISI 
(I.111 

culated by means of the experi- 
mental results of [?I. 

Values of the constant C and the skewness S obtained from experiment 
exist in a number of references. These data are presented in the table. 

Results are presented here of very diverse experiments to measure 
the turbulence characteristics in wind tunnels [2,4,7], in the atomo- 
spheric layer near the earth L8.91, in the ocean [io]. The scatter in 
the data is rather noticeable and, at present, it is difficult to 
specify completely the value of the skewness S or the coefficient C. 
Hence, formula (1.9) should be viewed as a convenient working formula 
with the free parameter a. 

Random fields determined by derivatives of the velocity can be 

l The following intuitive foundation is given in this paper: The 
Navier-Stokes equation is of parabolic type, hence, the velocity 
pulsations being generated by the large-scale vortices will be 
smoothed into a fine-scale Gaussian function (or a similar function). 
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defined, within the scope of the Kolaogorov theory, as simply homo- 

geneous and isotropic random fields in all scales. The mean square and 
correlation function can be determined for them. A vortex field may 

serve as a typical example. However, for such fields the theory of 
locally isotropic turbulence permits the determination of the form of 
the correlation function only in the inertial interval. The complete de- 
termination of the form of the correlation functions requires knowledge 
of the form of the velocity structural functions in the whole interval 
of equilibrium. 

Random fields defined by the squares of the derivatives of the velo- 
city, such as the field of the Laplacian of the pressure, will also be 
homogeneous and isotropic fields in all scales. Their correlation fuoc- 
tioos will be determined by the fourth moments of the velocity, whose 
relation to the second moments (the structural functions) will require 
knowledge of the probability distributions of the difference in the velo- 
city components at two points in the flow. The Milliooshchikov hypothesis 
[~II, that the fourth moments are expressed in terms of the known second 
moments exactly as in the norwal probability distribution, is usually 
used here. In this case, from similarity considerations, only the 
character of the dependence on the distance (the exponent) can be in- 
dicated exactly for the correlation functions in the inertial interval. 
However, since the Milliooshchikov hypothesis here introduces not more 
than a IO-15% error [121, the results obtained by using it are completely 
satisfactory in many cases. The accuracy of the results obtained by using 
this hypothesis for scales r $A,, remains unclear. 

Formula (1.8), extended over the whole interval of equilibrium, is the 
basis of all the subsequent computations. A comparison with results ob- 
tained on the basis of a model of turbulence with constant skewness shows 
that a whole series of turbulent flow characteristics do not depend very 
strongly on the selection of the model of turbulence. 

In certain places, where a great amount of numerical computation 

would not be required, the Heisenberg model 1131 was used in addition to 
the model of turbulence with constant skewness. In this model, the 
spectral density 

decreases comparatively slowly for large k, as k-‘. The constant Y can 
be related to the considered parameter a. Actually. comparing (1.9) and 
(1.12) in the inertial interval, we find 

v __ sra : F/3) 1.41 
1 _--.- - _ _.. ._ 

!)I1 I, 
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The spectral densities (1.8) and (1.12) are, in a certain sense, 
extreme cases of very rapidly and very slowly decreasing spectra. 

Since the parameter o is assumed to be free, it is convenient to re- 
present the results of the computations in a form independent of it. Let 
us transform to the nondimensional coordinates 

x = v a ).Ji :IT ko’k, x = r / X0’ (1.14) 

Let us also introduce the nondimensional structural velocity tensor 
in the form 

a (<E) v)“’ dij (r / ho’) E Dij (r) (1.15) 

and the nondimensional spectral density of the kinetic energy as 

-k:* 
E (x) = J+- 

r (2 I4 
exp (-x”-) 

2. From (1.5), which relates the structural 

following formulas [14] for the nondimensional 

(1.16) 

and spectral tensors, the 
longitudinal and lateral 

structural functions and the magnitude of the tensor dij(x) can be ob- 

tained by using the isotropy condition 

dl[ (5) = 4 r(g + c$T - SS) E (x) dx (2.1) 
G 

1’0 compute these functions let us use the well-known integrals [IS] 

where M(a, y, z) is the confluent hypergeometric function. Using the re- 
currence formulas relating the confluent hypergeometric functions which 

differ by an integer in the values of the parameters a and y (e.g. see 
[161 and the appendix as well), it is possible to obtain the formulas 

(2.4) 

&(2) - 2[M( - $, 5, - f) _I] (24 
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d&)=3+;, g, -f)-q-f, +, -3-2 (2.7) 

d(z)=6[+& -+, -$)-l] (2.8) 

Hence, for x << 1, using the known expansions of the function ,Il(a, 

y, z), we have 

x2 x4 2x2 x4 X2 4 
dlr(2)=15-gjj+ . . . . d,,(z)=~-y& . . . . d(z)=;,-&+... (2.9) 

It is evident that the principal terms of the expansion agree with 

formulas (1.3). 

According to [16! , for x >> 1 

dll (x) = 
9 Jfi(x;2)-3 

11I‘(11~ 6) ( 
-2.zO.96i.2-~~~(1+~~-...)-2 (3.10) 

dnn (4 = 
12 T/r (I ’ 3)“3 j 1. 12_ _ 

11r (11 / 6) ( 
, i8x3 . . . --2, 1 

-1.29JY~ I+& -... -2 
( ) 

(2.11) 

d (x) = 
3 I/n (z / 2)% 

I‘(11 /ti) 
(l+;$ --...I-6~33.W(l+~~ -...;--I; (2.12) 

In the given model, the presence of a constant component in the 

asymptote is characteristic for large distances as it is not, for exsmp 

in the model with constant asymmetry [3,17] . 
le, 

Equating formulas (2.11) and (1.4). we obtain (1.10); hence, we obta 

(1.11) by using (1.9). The longitudinal and 

lateral structural functions are pictured 

by solid lines on Fig. 1. The method of com- 

puting the hypergeometric functions is 

given in the appendix. The structural func- 

tions corresponding to the hypothesis of 

constant skewness [3,171 are shown by 

dashed lines. Because of the relation be- 

tween the narameter LI and the skewness. a 

conversion of the results of [3,171 for 

comparison with ours is obtained by a 

simple scale transformation 

in 

.C -7 r,.4S.I.,<! dii (.I.) = /t.08flig (.r,) 

The principal terms of the expansions 

the same for the structural functions in 

Fig. 1. 

for x << 1 and x >> 1 will be 

both models, however, the 



Correlations in a locally isotropic turbulent flow 87 

asymptote of the structural functions for x >> 1 will be reached outside 
the limits of this figure for S = const in the given scale. For x >> 1 
the structural functions of the two models will differ by a constant 
equal to 2. 

In the Heisenberg model an analytic form for the structural functions 
has not been obtained successfully in the whole interval of equilibrium, 
hence, let us be limited to finding the second term of the expansion, at 
zero, of the structural functions (evidently the first term will be 
common for all isotropic models). To do this, let us expand the paren- 
theses in the integrands in (2.1) and (2.2) in Taylor series up to terms 
of order x4 inclusively. 

Integrating the obtained expressions with E(k) in the form (1.12), 
we obtain in the variables under consideration 

d,, (5) = 15 - - 
v/n r (ii / 6) l”‘z (5 / 3) z4 + 

2iOOI’(4/3) 
. . . = $-O.ooO763z”+. . 

d,, (x) = 22” _ vcr (*i / 6, ra’2 (5 i 3) z4 + 
15 7oor (413) 

29 _ o oo229s4 + . ..=-. . 
15 

. . 

3. Kolmogorov’s equation [2! permits the computation of the third 
moment of the velocity pulsation 

0 2 4 6 x 

-2 

-6 

Fig. 2. 

if the second moment is known. In the 

nondimensional variables of (1.12) 

and (1.14), this equation takes the 

form 

a&(z) = - 4T 5 + 6&'(s) (3.1) 

where the nondimensional third moment 

is introduced by using the relation 

~~~~ cr.) = d2 ((~))“~dm (r / h,‘) (3.2) 

From (3.1) and (2.6), we obtain 

nr&(s)=-$r[l- q;,;, - $)I 

(3.3) 

'Ihe asymptotic expansions have the following form: 

adrrl(x)=-4$5+&-- @ < 1) (3.4) 

9 I/<.$!3 
adrlr (CC) = - $ + llr (11, 6) ~5’3 - . . . = --0.8x$3.38x--‘~~- . . . 

(z>l) (3.5) 

Hence, it is seen that the longitudinal third moment approaches its 

asymptotic value - 0.8~ rather slowly. 'Ihe results of calculations of 
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the third moment are given in Fig. 2. 

From (3.3) and (2.6) we obtain the following expression for the 

skewness: 

S(T) = Dill “I,, = - 0.82 [ 1 - M (213, 712, - x2/4)] 

1% (?)I ’ 2S1Za [M (-i/3, 512, -+v2/4) - 11” 
(3.6) 

Hence, the following expansions can be obtained: 

4v/15 
US (5) = - 7 (1-;~+...)=2.21(1-0.057Z~+...) WY) (3.7) 

US (5) = - 0.843 (1 + 3.102~“3 - 4.85x-‘/~ + . ..) (Z > 1) (3.8) 

‘Ihe behavior of the skewness (more accurately, the quantities d(x)) 

is also shown in Fig. 2. Let us note that for the case under considera- 

tion the skewness at zero is 2.6 times greater than in the inertial 

interval. 

Values of the skewness at zero for the Heisenberg, Kovasznay and 

Obukhov models are presented in Reid’s paper [181. In our variables, 
these Quantities equal, respectively, 2.14. 7.20, 3.62. Values of the 

skewness in the Heisenberg model are very similar to the value obtained 

in the model with a spectrum decaying as a Gaussian function. The two 
last values are noticeably greater than the two first. This latter 
circumstance is perhaps due to the fact that the Kovasznay and Obukhov 
spectra vanish beyond a certain wave number. 

In concluding this section let us examine one circumstance for which 

Reid found no explanation, when he compared the value of the skewness at 
zero with the value in the expression for the spectrum in the inertial 
interval. Let us recall that skewness in the Kolmogorov theory is de- 
fined by (1.7) and it is precisely this expression for A,, << r << L which 
enters into the formula for the spectrum in the inertial interval. 

The skewness at zero is defined as 

It is easy to see that (1.7) trans- 
forms into this latter only If r - 0. 
The Kolmogorov skewness should not be 

the same in the inertial interval as 
near zero. 

Fig. 3. 

4. A computation of the vorticity correlation functions can be made 

by the appropriate differentiation of the structural functions of the 
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velocity. As is known, the correlation component of the vortex vector 
o = rot v is expressed in terms of the correlation of the velocities as 
follows 1131 : 

(KIT (M) ~j (M’)) = Qij (r) = - 6ijARkk (r) + ‘g + ARij (r) (4.1) 
1 1 

where R. .(r) is the correlation tensor of the velocities. Hence, the 
followi:; expressions for the longitudinal and lateral vorticity cor- 
relation functions can be obtained in the terminology of the velocity 
structural functions: 

(4.2) 

(4.3) 

Using (1.3) and (1.4), it is possible to determine the behavior of 
the vorticity correlation functions near zero and in the inertial inter- 
val . For r << A, we obtain 

QII = A$, Qnn=$$ Qkk = QII+ 2Qnn= $ (4.4) 

In the inertial interval 

Qll = g c2 (E)‘%-“‘, Qnn = h C2 (e>“+, Qkk = ; c2 (e)“Sr-(‘S (4.5) 

Using the results of computations performed for [51, it is possible 
to construct normalized vorticity correlation functions qll and q,, for 
the model of turbulence with constant skewness, These functions are 
given dashed in Fig. 3 on the scale used there, The correlation functions 

for a model with the spectral density (1.8) are shown by the continuous 

line. The following formulas can be obtained for these functions 
(4.6) 

The asymptotic expansions here are 

qll (2) = 1 - 0.0688x2 + . . ., g,,(~)==l-O.l33r”+... (z < 1) (4.7) 

qlr (2) = 3.78x-% (1 - 2.22~-~ + .), 9nn (x) = 1.26~--“~ (1 + 4.34~-~-. . .) (x > 1) 

The difference between the lateral correlation function q,,(x) and an 

analogous function found under the hypothesis of constant skewness , 
strikes the eye. The latter has a negative section while the former is 

positive everywhere. In completely homogeneous turbulence q,, must 

actually have a negative section, as follows from the vector o being 
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solenoidal. Actually, the equal itg 

results from the condition div o) = 0. 

Hence, integrating by parts and assuming a sufficiently rapid decay 

of Q[~(x) at infinity, it is possible to obtain the relation 

cr3 
i 
.) 

l - m y P//,, (I) (/I d?],,” (r) dr = - 
2 . 

0 0 

(1.9) 

For III = 1 
co 

I qnn (I) dr = u (4.10) 

i.e. the function 9,, must have negative sections. However, it is neces- 
sary for compliance with condition (4.1) that the function Q~~(x) should 
decrease more rapidly than I -=. Here, this function is calculated only 

in the inertial interval where the decrease occurs according to the law 
z-4/3 so that the equality (4.1) does not hold in the present case. Hence, 

it is a coincidence that the lateral correlation function has a negative 

section under the hypothesis that the skewness is constant. An analogous 

remark can be made about the longitudinal correlation function of the 

acceleration also (see Section 7 below), evaluated in [17I under the 

same hypothesis S = const. which also has a negative section. The decay 

in the correlation functions there is weaker still and occurs as x -2/3 . 
The negative sections, where they exist, should be observed in scales 

larger than the external scale of turbulence, i.e. beyond the inertial 

interval where the correlation apparently actually decreases sufficiently 

rapidly. 

5. Obukhov and Iaglixn [l;] g ave a method of computing the pressure 

structural function 

r1 (r) = :[p (Jf) - p (.lf’)]z) (5.1) 

Here, the following equation is used 

3ri iIrk 

AP - -P~~.,~- 
h I 

which is obtained from the Navier-Stokes equation and the incompress- 

ibility condition. 

Multiplying (5.2), taken at the point M, by an analogous equation at 

the point M’, using the homogeneity condition and the Millionshchikov 

hypothesis, it is possible to obtain an equation for the function ll(r) 
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= - p2@ (r) 

Let us introduce the nondimensional functions T(X) and T(X) 

II (r) = u2p2 (e> WI (r / ~~), 4D (r) = a2 (8) Y%p (r / h,‘) 

Ihen, according to [17] 

c0 

,(,,=~3(-321_L3~~+-1;2"je(.)dr+$S zg,(s)ds 
0 X 

'lhe function p(x) can be written as 

cp (x) = -$- dt? (x) + $ dl; (x) d” (x) $ 4dry2 (x) 

In the case under consideration calculations yield 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

Ilere and later, in the interests of brevity, we shall use the nota- 

tion 

M,=M($*~, -$j (5.6) 

The function f+(x), used repeatedly later, is actually the correlation 

of the Laplacians of the pressure. Its asymptotes are 

q+)=$-(l-~lcz-+.**) (x-e 1) (S.cj> 

rp (4 = 
7x. $3 

121r2 (y/s) 
x-‘~~ z 0.652~-% (z>lt (5.10) 

Hence, the function q(x) diminishes rather rapidly but remains always 

positive. The normalized correlation function of the Laplacians of the 

pressure tpl(x) = (15/8)(p(x) is pictured in Fig. 4. 

'Ihe nondimensional structural function of the pressure x(x) must be 

proportional to .x' for x << 1 because of the smoothing effect of the 

viscosity; from (5.5) and (5.91, we have the proportionality coefficient 

b=f~zp(z)dz (5.11) 

a 

'Ihis integral was evaluated numerically and equals 0.294. In order to 

calculate the next terms in the expansion of r(n) it is necessary to use 

the asymptote of 9(n) for x << 1. Using (5.10), we obtain 
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Let us note that tile second terrrl of the 

expansion of the function IT(r) is inde- 

pendent of the turbulence model within the 

scope of the Mi 11 ionslkchikov hypotllesi s 

for r << A, and is determined only by the 

local isotropy of the flow. 

Knowledge of the first term in the ex- 

pansion of a(x) for small 2z permits the 

finding of the mean-square of the gradient 

of the turbulent pressure pulsations Fig. 4. 

1 8‘71 Ii)) <(yy/))“> -z -,‘-~- --. _ 
_ ori- 

-.- $ AI1 (0) (5.13) 

Calculations yield 

((77 PI’ > =-- (J.88‘&3? <t.>fL\4:, r.~ I+’ +;“‘V- -1:) (5.14) 

The value of the coefficient B in [191 for the mean square of the 

pressure gradient is l.l/lSl or, if (1.11) is taken into account, then 

R = 1.30. Batchelor [201, using a function of the form 

also estimated this coefficient. 

In his computation Batchelor assumed Cb = 2.0 (C = 1.83) and he found 

that his coefficient B = 1.3. It is not difficult to see that the coeffi- 

cient B contains Cb as the factor Cb3i2, i.e. after certain calculations 

his result can be represented in the form B = 0.31 C” = 1.360. According 

to 1211, B = 1.4 y-l = 1.00 for the Heisenberg spectrum. Hence, four 

different turbultnce models yield quantities for the mean square of the 

pressure gradient which differ within a range of the order of 50 per 

cent. 

Let us return to the calculation of the pressure structural function 

for large values of X. Here, as Obukhov [22] shored, the function n(r) = 

p2Dl 12(r) or, according to (2.12). in this case n(x) = 0.940x4/‘. But. 

as was detected in [IV], there is a term proportional to x in the ex- 

pansion of n(x) for large values of the argument. However, it is more 

convenient at the beginning to compute the function m(x) nU8etiCallY for 

intermediate x and then, by using these results, to determine the 
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asymptote for x >> 1. The numerical integration was carried out for the 

range 0.4 < x < 8. In calculating the asymptote for x >> 1 it is neces- 

sary to take into account that the first integral in (5.5) diverges as 

x increases. Hence, it wss broken into two parts: from 0 to 8. where it 

was integrated numerically, and from 8 to a, where it was integrated by 

using the asymptotic expansion of the function o(x). After addition of 

these two parts and the execution of other necessary operations, we ob- 

tain 

n (2) = 0.940r’:a - 0.107~ - 2.35 + 4.33~+ - i .83~-?‘~ + . . . (5.15) 

The pressure structural function is pictured in Fig. 5. The struc- 

tural function computed in [l?] under the hypothesis of constant skew- 

ness, is superposed by dashes for comparison: the asymptotes for this 

function are somewhat different. 

In the scale used there they have the following form: 

l-f (x) = 0.41522, (z -=z I), JI (2) = 0.9401”’ - 3.081: + 14.4 (x > I) (5.16) 

6. For a number of applications it is necessary to know the spectrum 

of the pressure fluctuations in a turbulent flow. In particular, if the 

pressure spectrum is mltiplied by k’, then up to a numerical factor, 

we obtain the spectrum of the fluctuation of 

the dissipation [23]. In calculating the 

pressure spectrum it is convenient to start 

from the equation 

<Ap (M) Ap (:\I’)) = A2 (<pp’)) = 

1 SOi, a2Dil 
=- --___ 

2 p2 arldrl f3ri8rk 
= + pw (r) (6.1) 

obtained from (5.3). Executing a Fourier 

transformation on this equation and averag- 

ing over the angles, we obtain the formula 

k4F, (k) = ski r@ (r) sin kr dr 
n 

(6.2) 

where Fp(k) is the three-dimensional spectral density of the pressure. 

Let us introduce the nondimensional function g(K) 

4n2ksF, (k) = a3p2 (e)‘h-‘$ (kl.,‘) 

Then it follows frotn (6.2) that 

(6.3) 
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g (x) - \ .q (z) sin xx ds (6.4) 
. 
0 

By using this expression it is not difficult to find the asymptote 

of the function g(~) for K << 1, i.e. in the inertial interval. Tt is 

easy to see that this asyqtote is determined by the behavior of q(x) 

for * >> 1. Simple computations yield 

when evaluating the pressure spectruni for 

large wave numbers 

16.6) 

It is convenient to start from another 

representation, which can be obtained from 

(6.1) by using the convolution theorem [?Ol , 

IIere E(/kl) is the spectral density of 

the velocity pulsations; 0 the angle be- 

Fig. 6. 

tween the vectors k and k’. Transforming to nondimensional variables, 

introducing spherical coordinates and integrating over the angle q we 

obtain when (1.8) is taken into account 

The asymptotic expansion of this integral for K >> 1 equals 

Fp’(%) = 
256.2”s (1 f crf I) 

9e*F (3 / 3) 
x_,,/,e_, 

/IX’ (1 $ 0 (r2)) z 15.5~-‘%e-‘/~~’ (6.8) 

For the value K - 1 the spectrum was calculated by numerical integra- 

tion of (6.4). The function g(~), which is proportional to the pressure 

spectrum, is pictured in Fig. 6. The asymptote (6.5) and the asymptote 

corresponding to (6.8) 

& Cy.) =_ 612X-1”, E-‘.‘2’.’ (6 9) 

are given by dashes. 

As a comparison with these results, let us calculate the asymptote of 

the pressure spectrum in the Heisenberg model for large wave numbers. 
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Substituting the spectral density (1.12) into (6.7). we obtain after 

calculations 

F,’ (x) = 
25r3 (5 / 3) 

40n 
x-11 (1 

The last asymptote 

7. The statistical 

+ 0 (x-1)) cz 0.158x-l*, g(x) = 4n2x5Fp’ (x) z 6.24x-a (6.10) 

is superposed in Fig. 6 by a dash-dot line. 

configuration of the acceleration field of fluid 

particles in a turbulent flow was studied in detail in 1171. Let us use 
the fundamental results of the computation performed there for the case 
under consideration and let us determine the mean square of the accele- 
ration and the correlation functions. As a result of the equations of 
motion the acceleration components of the fluid particles equal 

It is possible to obtain the formula 

(w?) = &Al-l (0) - f A2D (0) (7-l) 

for the mean square acceleration. 

Using (5.9) and (2.11), we obtain 

(zci2) = (0.882a + 2 /3a) (~)k+ (7.2) 

Theoretically a>fi for the asymptotic formula (1.8) (as is 
generally justified by experiment (see the table)), hence, the mean- 
square acceleration in a turbulent flow is determined mainly by the 
fluctuating pressure gradients. Iaglom [19] obtained the following ex- 
pression under the hypothesis S = const: 

(Wi2) = (G f 0.3 1 s 1) (E)3~W-‘/z = (1.3U + :‘g) (E)‘/T-‘/z (7.3) 

It is characteristic that frinctional forces play a relatively large 

part in (7.2) than in (7.3). Thus, for 1.91 = 0.47 (a = 1.76) the viscous 

friction forces are about 20 per cent and about 5 per cent. respectively, 

of the totals in the mean-square acceleration. Estimates of the magni- 

tudes of the acceleration for the turbulence model under consideration 

are somewhat reduced under the different conditions presented in [17,19] 

but the general deductions on the possibilities of large values of turbu- 

lent accelerations remain valid. 

Let us compute the acceleration correlation functions taking account 

of the effect of viscosity since it can be notable as compared with the 

case of the model of turbulence with constant skewness [ITI where the 
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correlation of the pressure gradients was computed in practice. However, 
the parameter a is not successfully eliminated from the eguation for the 
acceleration correlation functions; it is not invariant with respect to 
a as is seen from the example of the mean-sguare accelerat.ion (7.2). 
Hence, let us compute separately the correlation of the pressure gradients 
and the correlation due to viscous forces. The sum of these two will be 
the total acceleration correlation. 

Ihe following expressions were obtained in [l?] for the longitudinal 

and lateral correlation functions of the acceleration 

An(r)= +$“(r) + va(~D,;-~D+- Dl; + +Dl:v)=A&i1;(7.4) 

&n(r) = & n’(r) - (7.5) 

Let us first calculate the correlation due to the effect of viscosity. 

Let us introduce the nondimensional functions 

a[; (r/h,‘) = UV~“(E)-“~A~; (r), I%,; (r / h,‘) = av”’ (e)-?4,; (r) (7.6) 

The functions all “(x) and a,:(x) can be obtained by differentiating 
(2.6) and (2.8). Using the recursion relations for the confluent hyper- 

geometric functions, we obtain the following formulas (see the notation 

in (5.8)): 

For large x 

To compute the correlation of the pressure gradients let us introduce 

the functions 

a I’; (r / ho’) = a%” (E)-“‘A$ (r), 

According to [171 

a,; (r / h,‘) = a-‘> (E)-“‘A,,; (r) (7.9) 

where the function q(z) is determined by equalities (5.6) and (5.7). 
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Using the properties of the functions T(X) and cp(x), we can obtain the 
expansions 

“J (5) = 0.294 - 6 x2 + . . . , a,; (2) = 0.294 - & 22 + . . . @<I) (7.10) 

q’ (z) z 0.164~~*la, 0l-E (z) 5% 0,493 x--*/a (r S- $1 (7.11) 

Hence, the correlation of the pressure gradients diminishes much 
more slowly than the correlation due to viscosity. ‘IIie latter can only 
play a part at small distances. 

A numerical integration was carried out for intermediate values of x. 
The normalized correlation functions of the pressure gradients are 
pictured in Fig. ?. For comparison, corresponding correlation functions, 
computed in [I71 under the hypothesis 
of constant asymmetry, are superposed 
by dashes. The different character of I 
the behavior of the longitudinal cor- 
relation functions was mentioned at 
the end of Section 4. 

The statistical configuration of 
the random field of kinetic energy u 
dissipation can be studied in an 

‘Q<_,_-- X 

analogous manner, as was done by the Fix. 7. 

author earlier [ZZ] . 

Appendix. Functions which are expressed in terms of confluent hyper- 
geometric functions M(a, y, - l/ax*) with different values of the para- 
meters a and y. correspond to a spectrum which decreases as exp(-k’) 

for large wave numbers. The function M(a, y. z) is defined by an in- 
finite series which converges for any value of Z. However, for z 3 1 
this series converges slowly. An asymptotic expansion [161 can be used 
for t >> 1. The function !!(a, y, t) is not tabulated for the values of 
the parameters a and y encountered herein, hence, special calculations 
were carried out. Formulas (2.4) and (2.5) were used for this. namely, 
the integrals 

00 . s k~~*,-k.coskxdk=~r(~)M($, +, -f) 
0 

03 

c k-‘/s emk’sin k&k =1 

‘n 
(2) 

were evaluated numerically for values of x from 1.0 to 4.0. Appropriate 
series were used for lesser and greater values of the argument. 
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All the remaining, required functions M(a. y, - 1/4x2) differ from 

the computed two by an integer in the values of the parameters a and y 
and can be found by means of recursion relations connecting such func- 

tions Cld. Let us note that the last of the recursion formulas in all 

editions of cl61 has a misprint. It should be 

r (7 - x) M (2, T + i, r) = T (r + T - i) M (x, 7, 2) + T (7 - i) M (a, T - 1, 2) (3) 

Let us also present one more recursion relation which is very often 

useful in computations 

a&f (a+ I, Y + 2, 2) = Y (Y + 1) IM (a, 7),3) - M (a, 7 + 1, 211 (4) 

which is verified by direct substitution of the series for the confluent 

hypergeometric function. 

In conclusion, I am grateful to A.M. Obukhov for discussions and 

comments during performance of the research and also to A.S. Yonin and 

A.M. Iaglom who read the manuscript and made a number of remarks. 
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